
The Secrets of Concurrency

Heinz Kabutz
The Java Specialists’ Newsletter

http://www.javaspecialists.eu

© 2007 Heinz Max Kabutz – All Rights Reserved

2

The Secrets of Concurrency

• In this talk you will learn the most important secrets to
writing multi-threaded Java code…

3

Background

• Heinz Kabutz
– German-Dutch South African living in Greece
– The Java Specialists’ Newsletter

• 30 000 readers in 114 countries
• Hand in business card to get free subscription

– Java Champion
– Actively code Java
– Teach Java to companies:

• Java Foundations Course
• Java Specialist Master Course
• Java Design Patterns Course
• http://www.javaspecialists.eu/courses

4

Structure of Talk

• The Laws of Concurrency
– Law 1: The Law of the Ritalin Child
– Law 2: The Law of the Distracted Spearfisherman
– Law 3: The Law of the Overstocked Haberdashery
– Law 4: The Law of South African Crime
– Law 5: The Law of the Leaked Memo
– Law 6: The Law of the Corrupt Politician
– Law 7: The Law of the Micromanager
– Law 8: The Law of Greek Driving
– Law 9: The Law of Sudden Riches
– Law 10: The Law of the Uneaten Spinach

5

Instead of suppressing interruptions, deal with the
cause.

* Ritalin: Medicine prescribed to deal with children that
constantly interrupt.

5

6

Law 1: The Law of the Ritalin
Child

• Have you ever seen code like this?
try {
 Thread.sleep(1000);
} catch(InterruptedException ex) {
 // this won’t happen here
}
• We will answer the following questions:

– What does InterruptedException mean?
– How should we handle it?

7

Shutting Down Threads

• Shutdown threads when they are inactive
– In WAITING or TIMED_WAITING states:

• Thread.sleep()
• BlockingQueue.get()
• Semaphore.acquire()
• wait()
• join()

• e.g. Retrenchments
– Get rid of dead wood first!

Law 1: The Law of the Ritalin Child

8

Thread “interrupted” Status

• You can interrupt a thread with:
– someThread.interrupt();
– Sets the “interrupted” status to true
– What else?

• If thread is in state WAITING or TIMED_WAITING, the thread
immediately returns by throwing InterruptedException and sets
“interrupted” status back to false

• Else, the thread does nothing else. In this case,
someThread.isInterrupted() will return true

• Beware of Thread.interrupted() side effect

Law 1: The Law of the Ritalin Child

9

How to Handle
InterruptedException?

• Option 1: Simply re-throw InterruptedException
– Approach used by java.util.concurrency
– Not always possible if we are overriding a method

• Option 2: Catch it and return
– Our current “interrupted” state should be set to true

while (!Thread.currentThread().isInterrupted()) {
 // do something
 try {
 TimeUnit.SECONDS.sleep(1000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 break;
 }

Law 1: The Law of the Ritalin Child
X

10

Focus on one thread at a time. The school of threads
will blind you.

* The best defence for a fish is to swim next to a bigger,
better fish.

3

11

Law 2: The Law of the Distracted
Spearfisherman

• You must understand what every thread is doing in
your system
– Good reason to have fewer threads!

• Don’t jump from thread to thread, hoping to find
problems

12

Causing Thread Dumps

• The jstack tool dumps threads of process
– Similar to CTRL+Break (Windows) or CTRL+\ (Unix)

• For thread dump JSP page
– http://javaspecialists.eu/archive/Issue132.html
– Sorted threads allow you to diff between calls

Law 2: The Law of the Distracted Spearfisherman
X

13

Having too many threads is bad for your application.
Performance will degrade and debugging will

become difficult.

* Haberdashery: A shop selling sewing wares, e.g. threads
and needles.

6

14

Law 3: The Law of the
Overstocked Haberdashery

• Story: Client-side library running on server
• We will answer the following questions:

– How many threads can you create?
– What is the limiting factor?
– How can we create more threads?

15

JRE Dies with Internal Error

Exception in thread "main" java.lang.OutOfMemoryError: unable to create
new native thread

 at java.lang.Thread.start0(Native Method)
 at java.lang.Thread.start(Thread.java:597)
 at ThreadCreationTest$1.<init>(ThreadCreationTest.java:8)
 at ThreadCreationTest.main(ThreadCreationTest.java:7)
#
An unexpected error has been detected by Java Runtime Environment:
#
Internal Error (455843455054494F4E530E4350500134)
Java VM: Java HotSpot(TM) Client VM (1.6.0_01-b06 mixed mode, sharing)
An error report file with more information is saved as

hs_err_pid22142.log
#
Aborted (core dumped)

Law 3: The Law of the Overstocked Haberdashery

16

How to Create More Threads?

• We created about 9000 threads
• Reduce stack size

– java –Xss48k ThreadCreationTest
• 32284 threads
• Had to kill with -9

– My first computer had 48k total memory
• Imagine 32000 ZX Spectrums connected as one computer!

– Can cause other problems
• See The Law of the Distracted Spearfisherman

Law 3: The Law of the Overstocked Haberdashery

17

How Many Threads is Healthy?

• Additional threads should improve performance
• Not too many active threads

– ± 4 active per core
• Inactive threads

– Number is architecture specific
– But 9000 per core is way too much

• Consume memory
• Can cause sudden death of the JVM
• What if a few hundred threads become active

suddenly?

Law 3: The Law of the Overstocked Haberdashery

18

Traffic Calming

• Thread pooling good way to control number
• Use new ExecutorService

– Fixed Thread Pool
• For small tasks, thread pools can be faster

– Not main consideration
• See http://www.javaspecialists.eu/archive/Issue149.html

Law 3: The Law of the Overstocked Haberdashery
X

19

You might miss important
information if you try to be

too clever.

* “Crime is a perception”

6

20

Law 4: The Law of South African Crime

• Java Memory Model allows thread to keep local copy of
fields

• Your thread might not see another thread’s changes
• Usually happens when you try to avoid synchronization

21

Calling shutdown() might
have no effect

public class Runner {
 private boolean running = true;
 public void doJob() {
 while(running) {
 // do something
 }
 }
 public void shutdown() {
 running = false;
 }
}

Law 4: The Law of South African Crime

22

Why?

• Thread1 calls doJob() and makes a local copy of
running

• Thread2 calls shutdown() and modifies the value of
field running

• Thread1 does not see the changed value of running
and continues reading the local stale value

23

Making Field Changes Visible

• Three ways of preventing this
– Make field volatile
– Make field final puts a “freeze” on value
– Make read and writes to field synchronized

• Also includes new locks

Law 4: The Law of South African Crime

24

Better MyThread

public class Runner {
 private volatile boolean running = true;
 public void doJob() {
 while(running) {
 // do something
 }
 }
 public void shutdown() {
 running = false;
 }
}

Law 4: The Law of South African Crime
X

25

The JVM is allowed to reorder your statements
resulting in seemingly impossible states (seen from

the outside)

* Memo about hostile takeover bid left lying in photocopy
machine

4

26

Law 5: The Law of the Leaked
Memo

• If two threads call f() and g(), what are the possible
values of a and b ?

public class EarlyWrites {
 private int x;
 private int y;
 public void f() {
 int a = x;
 y = 3;
 }
 public void g() {
 int b = y;
 x = 4;
 }
}

Early writes can result
in: a=4, b=3

27

The order of Things

• Java Memory Model allows reordering of statements
• Includes writing of fields
• To the writing thread, statements appear in order

Law 5: The Law of the Leaked Memo

28

How to Prevent This?

• JVM is not allowed to move writes out of synchronized
block
– Allowed to move statements into a synchronized block

• Keyword volatile prevents early writes
– From the Java Memory Model:

• There is a happens-before edge from a write to a volatile variable
v to all subsequent reads of v by any thread (where subsequent is
defined according to the synchronization order)

Law 5: The Law of the Leaked Memo
X

29

In the absence of proper controls,
corruption is unavoidable.

* Power corrupts. Absolute power corrupts absolutely.

9

30

Law 6: The Law of the Corrupt Politician

• Without controls, the best code can go bad
public class BankAccount {
 private int balance;
 public BankAccount(int balance) {
 this.balance = balance;
 }
 public void deposit(int amount) {
 balance += amount;
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() { return balance; }
}

31

What happens?

• The += operation is not atomic
• Thread 1

– Reads balance = 1000
– Locally adds 100 = 1100
– Before the balance written, Thread 1 is swapped out

• Thread 2
– Reads balance=1000
– Locally subtracts 100 = 900
– Writes 900 to the balance field

• Thread 1
– Writes 1100 to the balance field

Law 6: The Law of the Corrupt Politician

32

Solutions

• Pre Java 5
– synchronized

• But avoid using “this” as a monitor
• Rather use a private final object field as a lock

• Java 5 and 6
– Lock, ReadWriteLock
– AtomicInteger – dealt with in The Law of the

Micromanager

Law 6: The Law of the Corrupt Politician

33

Pre-Java 5

public class BankAccount {
 private int balance;
 private final Object lock = new Object();
 public BankAccount(int balance) {
 this.balance = balance;
 }
 public void deposit(int amount) {
 synchronized(lock) { balance += amount; }
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() {
 synchronized(lock) { return balance; }
 }
} Law 6: The Law of the Corrupt Politician

34

ReentrantLocks

• Basic monitors cannot be interrupted and will never
give up trying to get locked
– The Law of the Uneaten Spinach

• Java 5 Locks can be interrupted or time out after some
time

• Remember to unlock in a finally block

Law 6: The Law of the Corrupt Politician

35

 private final Lock lock = new ReentrantLock();

 public void deposit(int amount) {
 lock.lock();
 try {
 balance += amount;
 } finally {
 lock.unlock();
 }
 }

 public int getBalance() {
 lock.lock();
 try {
 return balance;
 } finally {
 lock.unlock();
 }
 }

Law 6: The Law of the Corrupt Politician

36

ReadWriteLocks

• Can distinguish read and write locks
• Use ReentrantReadWriteLock
• Then lock either the write or the read action

– lock.writeLock().lock();
– lock.writeLock().unlock();

Law 6: The Law of the Corrupt Politician

37

 private final ReadWriteLock lock =
 new ReentrantReadWriteLock();
 public void deposit(int amount) {
 lock.writeLock().lock();
 try {
 balance += amount;
 } finally {
 lock.writeLock().unlock();
 }
 }
 public int getBalance() {
 lock.readLock().lock();
 try {
 return balance;
 } finally {
 lock.readLock().unlock();
 }
 }

Law 6: The Law of the Corrupt Politician
X

38

Even in life, it wastes effort and
 frustrates the other threads.

* mi·cro·man·age: to manage or control with excessive
attention to minor details.

5

39

Law 7: The Law of the
Micromanager

• Thread contention is difficult to spot
• Performance does not scale
• None of the usual suspects

– CPU
– Disk
– Network
– Garbage collection

• Points to thread contention

40

Real Example – Don’t Do This!

• “How to add contention 101”
– String WRITE_LOCK_OBJECT =

 "WRITE_LOCK_OBJECT";
• Later on in the class

– synchronized(WRITE_LOCK_OBJECT) { ... }
• Constant Strings are flyweights!

– Multiple parts of code locking on one object
– Can also cause deadlocks and livelocks

Law 7: The Law of the Micromanager

41

AtomicInteger

• Thread safe without explicit locking
• Tries to update the value repeatedly until success

– AtomicInteger.equals() is not overridden
public final int addAndGet(int delta) {
 for (;;) {
 int current = get();
 int next = current + delta;
 if (compareAndSet(current, next))
 return next;
 }
 }
} Law 7: The Law of the Micromanager

42

import java.util.concurrent.atomic.AtomicInteger;
public class BankAccount {
 private final AtomicInteger balance =
 new AtomicInteger();
 public BankAccount(int balance) {
 this.balance.set(balance);
 }
 public void deposit(int amount) {
 balance.addAndGet(amount);
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() {
 return balance.intValue();
 }
}

Law 7: The Law of the Micromanager
X

43

The JVM does not enforce all the rules.
Your code is probably wrong, even if it works.

* Don’t stop at a stop sign if
you treasure your car!

5

44

Law 8: The Law of Greek Driving

• Learn the JVM Rules !
• Example from JSR 133 – Java Memory Model

– VM implementers are encouraged to avoid splitting their 64-
bit values where possible. Programmers are encouraged to
declare
shared 64-bit values as volatile or synchronize their
programs correctly to avoid this.

45

JSR 133 allows this – NOT a Bug

• Method set() called by two threads with
– 0x12345678ABCD0000L
– 0x1111111111111111L

public class LongFields {
 private long value;
 public void set(long v) { value = v; }
 public long get() { return value; }
}
• Besides obvious answers, “value” could now also be

– 0x11111111ABCD0000L or 0x1234567811111111L

Law 8: The Law of Greek Driving

46

Java Virtual Machine
Specification

• Gives great freedom to JVM writers
• Makes it difficult to write 100% correct Java

– It might work on all JVMs to date, but that does not mean
it is correct!

• Theory vs Practice clash

Law 8: The Law of Greek Driving

47

Synchronize at the Right Places

• Too much synchronization causes contention
– As you increase CPUs, performance does not improve
– The Law of the Micromanager

• Lack of synchronization leads to corrupt data
– The Law of the Corrupt Politician

• Fields might be written early
– The Law of the Leaked Memo

• Changes to shared fields might not be visible
– The Law of South African Crime

Law 8: The Law of Greek Driving
X

48

Additional resources (faster CPU, disk or network,
more memory) for seemingly stable system can

make it unstable.

* Sudden inheritance or lottery win …
3

49

Law 9: The Law of Sudden Riches

• Better hardware can break system
– Old system: Dual processor
– New system: Dual core, dual processor

50

Faster Hardware

• Latent defects show up more quickly
– Instead of once a year, now once a week

• Faster hardware often coincides with higher utilization
by customers
– More contention

• E.g. DOM tree becomes corrupted
– Detected problem by synchronizing all subsystem access
– Fixed by copying the nodes whenever they were read

Law 9: The Law of Sudden Riches
X

51

A deadlock in Java can only be resolved
by restarting the Java Virtual Machine.

* Imagine a stubborn father insisting
that his stubborn daughter eat her

spinach before going to bed

5

52

Law 10: The Law of the Uneaten Spinach

• Part of program stops responding
• GUI does not repaint

– Under Swing
• Users cannot log in anymore

– Could also be The Law of the Corrupt Politician
• Two threads want what the other has

– And are not willing to part with what they already have

53

Using Multiple Locks

public class ProblemChild {
 private final Object lock = new Object();
 public synchronized void f() {
 synchronized(lock) {
 // do something ...
 }
 }
 public void g() {
 synchronized(lock) {
 f();
 }
 }
} Law 10: The Law of the Uneaten Spinach

54

Finding the Deadlock

• Pressing CTRL+Break or CTRL+\ or use jstack

Full thread dump:
Found one Java-level deadlock:
=============================
"g()":
 waiting to lock monitor 0x0023e274 (object 0x22ac5808,

a com.maxoft.ProblemChild),
 which is held by "f()"
"f()":
 waiting to lock monitor 0x0023e294 (object 0x22ac5818,

a java.lang.Object),
 which is held by "g()"

Law 10: The Law of the Uneaten Spinach

55

Deadlock Means You Are Dead ! ! !

• Deadlock can be found with jconsole
• However, there is no way to resolve it
• Better to automatically raise critical error

– Newsletter 130 – Deadlock Detection with new Lock
• http://www.javaspecialists.eu/archive/Issue130.html

Law 10: The Law of the Uneaten Spinach
X

56

Conclusion

• Threading is easy, when you know the rules
• Tons of free articles on JavaSpecialists.EU

– http://www.javaspecialists.eu
• Hand in your business card to get subscribed

The Secrets of Concurrency

Heinz Kabutz
The Java Specialists’ Newsletter

http://www.javaspecialists.eu

heinz@javaspecialists.eu
I would love to hear from you!

